
HOW TO
SOLO?
REFLECTIONS ON GAME CONCEPT VALIDATION

PROCESSES

EETU LEPPÄLÄ

WRITTEN AS PART OF THE COLLABORATIVE AND INDUSTRIAL
DESIGN DEGREE IN AALTO UNIVERSTIY

ACADEMIC ADVISOR: SEVERI UUSITALO

18.01.2023

TABLE OF CONTENTS

1 INTRODUCTION 4

1.1 PROJECT CONSTRAINTS.. 4
1.2 GAME PROTOTYPES.. 5

2 CONCIERGE 6

2.1 DESIGN PROCESS... 6
2.2 REFLECTIONS... 11

3 CONCIERGE CARDS 12

3.1 DESIGN PROCESS.. 12
3.2 REFLECTIONS... 15

4 SPACE SALOON 16

4.1 DESIGN PROCESS.. 16
INITIAL DESIGN .. 16
TECH DEMO ... 20
ALTERNATIVE PLAY .. 22

4.2 REFLECTIONS... 25

5 HEGEMONY 28

5.1 DESIGN PROCESS.. 28
5.2 REFLECTIONS... 28

6 MOVING MANOR 30

6.1 DESIGN PROCESS.. 30
PUZZLE GAME ... 30

6.2 DECK-BUILDER.. 33
6.3 REFLECTIONS... 40

7 MOVING MANOR – NEXT STEPS 42

8 LEARNINGS 44

9 RESOURCES AND LINKS 46

4 5

finding a game concept like this would cut down on development time in
relation to the potential playtime within the game.

1.2 GAME PROTOTYPES
I worked on the game prototypes over the period of approximately 6
months. The project has logged over 300 hours at the time of writing
this document.

Here is a summary of all the game prototypes I worked on:

• Concierge – Game concept exploring how to train players in
empathy in a hotel management setting.

• Concierge 2 – A more refined concept, where the player has to
balance running a hotel operation while ensuring customer satis-
faction.

• Concierge Cards – A technical prototype of Concierge 2, exploring
if a particular card-based mechanic would induce interesting
gameplay in this context.

• Space Saloon – A tile-placing game prototype. A natural continua-
tion to Concierge, where you still need to satisfy customers but
it’s all tied to building the optimal hotel structure for each
batch of customers.

• Space Saloon Tech demo – Programmed demo implementing basic room
movement, rotation and checking for accessibility between rooms.
Becomes important later.

• Hegemony – A single-player mobile game version of the game
Crisis, which I developed for my graduate thesis.

• Moving Manor Puzzle – A dungeon-crawler puzzle game build on the
constraints of the Space Saloon tech demo.

• Moving Manor deck-builder – A dungeon-crawling rogue-lite deck
builder with puzzle elements.

1 INTRODUCTION
In this report, I will reflect on the game design techniques I utilised
when trying to find an optimal long-term game project to work on next.
This project is a continuation of my graduate thesis project, where I
explored the importance of meaningful play in learning games. I wanted
to continue this work, now focusing less on the game being explicitly
thought of as a learning game, and more on it being a complete video
game, that may produce some learnings when played.

I will first outline the goal state and constraints for the entire
endeavour, as well as give a brief overview of each prototype. Then
I will delve into each game concept and prototype and the successes
and failures made along the way, focusing on the choices I made that
affected the ultimate decision of whether to continue with the itera-
tion. In the end, I will lay out collected learnings from these proto-
types.

1.1 PROJECT CONSTRAINTS
Seeing that I was working on this alone, I needed to find a game
project that I could finish optimally by myself. While I still haven’t
excluded the possibility of hiring outside help when needed, my
current situation is such that I wanted to preserve the option of
working alone. This meant I needed a simple game in terms of the
complexity of project architecture.

I also set myself an artificial constraint that I would be able to
finish the selected game project within a year. This also constrained
the space of the potential games further.

Seeing that I had just finished working on my thesis project before
starting on this project, I still aimed at creating gameplay that was
not only fun but would also foster some key capabilities we as humans
need to thrive on this planet together. While this was secondary to
the aim of just completing a solo game project, it still guided me.

Also, as I explored in my thesis, the prerequisite for any game that
aims to teach something is that it needs to be interesting enough for
people to play it. This is done by enabling players to extract meaning
from the game. In my opinion, by far the most effective tool to create
this type of meaning is by creating complex yet distilled play spaces.
I wanted to find a game concept that in its foundation exhibited the
potential to create emergent gameplay from the interesting combina-
tion of game elements while maintaining a simple exterior. Ultimately,

6 7

In a similar way, I wanted to explore the idea of simulating an envi-
ronment where you need to treat others with respect and get others to
feel good. Would this encourage moral behaviour in the real world? To
unpack this, I started researching what empathy and acting for others’
benefit is or could be as a game experience.

In order to force players to act empathetically, I wanted to find a
real-world counterpart, where it could be naturally enforced. The two
candidates at the time were the hospitality industry and nursing in
hospitals. From these two, I felt like the hospitality industry would
be more light-hearted, whereas in hospitals you really have no choice
but to take care of the wounded and sick.

After these quick ideations and once I had settled on the concept of setting
the game in the world of fancy hotels, I went to Figma and created an inter-
active prototype just to feel out what the game could be like. The idea of
the game was that you would need to get to know your customers so well that
you could actually arrange for them things they haven’t even asked for. But
I never actually got an actual playable demo of this game. I just couldn’t
figure out an interesting way to turn this type of gameplay into discrete
mechanics, especially the kinds of mechanics I would be comfortable coding.
Mainly I just concepted more and imagined how good the game would eventually
be. Finally, it just got stuffed into the drawer for a later day.

A couple of months passed and I decided to give it another shot. This
eventually morphed into Concierge 2, where the interesting part was
that the player had to find out and fulfil what their customers want
while also managing the day-to-day hotel operations. This meant the
player would have to choose every time to be nice and go the extra
mile for their customers, and not just take care of the routine of
running a hotel. This would be the only way to get your ratings to
rise, and for you to progress in the game.

2 CONCIERGE
A hotel management game where you need to go above and beyond to fulfil
the requests of your customers to increase your ratings, while simul-
taneously keeping your hotel operations running without a hitch.

2.1 DESIGN PROCESS
The idea behind Concierge began when I first watched The Good Place. In
it, the protagonist finds themselves in a pickle: after their death,
they have been accidentally placed in the Good Place, a religion-ag-
nostic heaven-equivalent, even though during their time in the Land of
the Living they were a horrible person. An ethics professor is let in
on this secret, and they advise the protagonist to start doing good
deeds even though their intentions were not pure. This way the behav-
iour comes first and the intention to be good will follow.

Mindmapping, trying to find good arguments the game might make, in conjunction with game
mechanics, that could create desired behaviours.

The first idea of how the game could work. Areas could be designated for different activ-
ities, and workers could follow those guidelines.

8 9

Screenshots of the first
Concierge prototype. In
it, you go and talk to
your patrons, and by
learning about them, you
can make their rooms a
little bit more comfort-
able or serve them in a
more particular manner,
giving you the chance to
learn even more about
them. I tried a system
where each customer had
three secrets they would
reveal about themselves
if the quality of the
service was on par. I
just couldn’t figure out
how this would tie into
actual game mechanics the
player interacted with in
the game in a lean way.

Sketches trying to identify actual gameplay features the player could perform in the game.

Mindmapping trying to identify what is different in this game compared to its closest
rivals. Here I identified that whereas most hospitality tycoon games focus on either
running the establishment, or some particular craft, such as with Potioncraft or Chef
RPG, I wanted to focus on the individual customers, making them feel like individuals,
instead of the precondition for making money.

2.2 REFLECTIONS
I had a nagging feeling that while the final game could be interesting,
for me as a solo developer there were too many kinds of interactions
for me to program instead of only a few mechanics that would combine
in interesting ways. This was a clear red flag. This would mean that
the development timeline would probably expand uncontrollably. So
finally I had to press the breaks and call quits on this iteration of
the game. None of the constraints I had set for myself fitted this game
concept. Also as the core gameplay was based purely on computationally
heavy interactions, instead of something I could prototype on paper,
I couldn’t get to validating the game unless I developed a hefty bit
of code. Seeing that there was no evidence as of yet that the game
would work, I opted to rather find a concept I could validate without
coding before committing to it. Also, while I could imagine getting a
working build of a hotel management game going, I still couldn’t figure
out mechanics that could simulate the player finding out what their
customers wanted without it feeling like an invasion of privacy or
otherwise conflicting with social conventions in the real world.

There were too many things wrong with the basic concept of the game
and it felt like too much work had to be put into every decision or
even trying to imagine what kinds of mechanics it would have. Previ-
ously working with games, at this stage, when the right idea has been
found, the ideas to broaden or deepen the gameplay come rather natu-
rally. Here that wasn’t the case.

There were a few things I did find interesting in this concept. As each
customer was procedurally generated from a set of characteristics,
each customer would require a different kind of treatment. I wanted
to keep that somehow in the later iterations. Also, the fact that each
customer is an individual instead of treating them like a mass was
interesting to me and I wanted to continue pulling on that thread.

Screenshot of the second iteration of
Concierge. The game would be played on
a map view, with various symbols iden-
tifying problems or things to solve in
the hotel, whether it was related to
customers or the actual infrastructure
of the hotel. The player would also be
provided with a staff view, telling them
who works for them, what their special
skills are and how much they are paid.
The player could also access a log view,
that listed all the possible things that
had happened or are happening currently.
And finally, they have a view identifying
each customer and any particularities
about them. This intel view would grow
in size the more the player got to know
their customers.

At the end of the week, the player would get a summary view, telling them how well they did with the
customers living in their hotel that week. Based on the player’s performance, they would get a number of
influence points, that would affect their star rating and the types of customers that visited their estab-
lishment. At the end of the week, they would also need to pay any costs related to running their hotel.
These costs and benefits would then inform them on how many customers they needed to take in the week after
and what to focus on.

12 13

of money and reputation indicated on the card. This was a preliminary
way of differentiating between important and unimportant tasks for the
player, creating some decision-making in the otherwise quite linear
experience. Once the progress bar, on the top right corner of the
screen, indicating the length of one week (the time for which every
customer would spend at your establishment) would fill up, the game
loop would end, and you would get any bonuses for that week, and you
would also get a chance to hire or fire personnel or make other changes
to your capacity, such as upgrade your rooms.

3 CONCIERGE CARDS
The Concierge game turned from a hotel tycoon game into a card game.

3.1 DESIGN PROCESS
I wasn’t ready to give up on Concierge right away. While there was
overwhelming evidence that I couldn’t get the earlier version to work,
at least on my own, I could look into the logic of the game and find
out what was the interesting bit of behaviour I wanted to see in the
game and discard everything else.

To me it felt like the process of allocating resources to various
things depending on the situation was interesting. These were game
situations such as: “Do I have the lobby boy carry the bags of the
customer to their room, increasing the final score I get from the
customer; or do I have them mop the dirty floor, increasing the overall
customer satisfaction?” Adding to that, if some of the decisions
were in a different category, such as choosing to allocate resources
to putting out a literal fire vs. allocating resources to having a
pleasant conversation with a customer, it created an interesting
tension on what is happening on the surface of the hotel vs what is
happening behind the scenes. Customers assume that everything operates
smoothly, but that is just because there is a constant battle against
the elements hidden from view.

So I decided to try if the game would work purely as a card game. The
player would get requests from time to time, appearing on the top of
the screen. They would need to allocate the available staff or other
resources to those tasks until they were complete by laying resource
cards on top of request cards. The resources would be tied to that
task until it was completed, leaving a deficit in the player’s resource
pool for that period. This would create the central tension of the
game.

I tried it a few times on Figma, but because I wanted the game to be
real-time, with actual timers ticking away above each request, there
wasn’t any sensible way of simulating this with only a paper proto-
type. So I jumped into Unity.

In Unity, I got the basic card pick-up and dropping mechanism to work
in no time. Once the requirements of the request were fulfilled, a
green timer would start, replacing the red timer indicating when the
request would go old. Once the green timer was done, the resources
tied to that request would be released, and you would get the amount

Figma prototype simulating fulfilling requests. I had playtesters play this while I acted
as the computer, putting new requests to the top of the screen, or tracking whether some
request was completed or not. It became quite chaotic quite fast. It also didn’t provide
me with any indication of whether the gameplay was fun or not.

14 15

3.2 REFLECTIONS
In the playtesting the gameplay turned out to be too deterministic.
There wasn’t actually any decisions to do. Even though I added the
“Randomize resources” button in the lower right corner, player would
just spam that until they got the right resources they would need,
with total disregard to their bank account balance, just because
fulfilling the requests and the timers were sort of oppressive and
demanded attention. This also went against the metaphor of the game,
where each resource card represented some physical being or thing in
the real world, so actually you couldn’t just randomise them. I guess
while I was working on the prototype, I just wanted to make it work,
and didn’t really pay attention to what I was trying to accomplish.

But here, instead of quitting on the project, I think I could have
continued a bit further. Because now looking at this after a while, I
see potential in it if it was changed to match more the original Figma
concept image. I also see that this game could work even as an actual
board or solitaire card game, by taking the timer out, and having
things happen in turn-order.

When deciding to kill this prototype, I probably got stuck into
analysing this version of the game, just because I had developed code
for it, and so I couldn’t see myself changing it. For some reason I
couldn’t see that changing things would affect anything, so it would
be best to kill it early.

All in all, if I had found an interesting mechanic and less determin-
istic gameplay, this prototype would have met all my requirements for
a long-term game project. The card placement code was easy to develop,
all other rules and elements in the game would have probably been
constraints on where I can place a card and where not. Had I killed
the timers, I could have continued development faster with only paper
prototyping. I might come back to this later.

Unity prototype implementing the basic logic of fulfilling requests. The link to the
GitHub repository is available at the end of this document.

16

4 SPACE SALOON
Space Saloon is another hotel management game, where you cater to your
procedurally generated batches of customers by actually changing the
layout of your space saloon to match each of your customers’ requests
in a harmonious balance.

4.1 DESIGN PROCESS
While I was over Concierge, I still believed there was some way of
accomplishing this catering to the needs of customers in a way that
would meet my constraints. Also, personally, I just wanted to create
a game where there would be agents moving on the board, instead of a
pure card game. I think I never admitted this to myself until now.

INITIAL DESIGN

Nevertheless, I got into designing the experience quite quickly. The
initial idea for the game came from thinking of the Concierge less
from the point of view of the customers and more from the point of
view of the hotel as a structure. What if you could change the struc-
ture of the entire building to match the needs of the customers. As it
didn’t make thematially sense to have a hotel that reconfigured itself,
I decided to go into a sci-fi direction. (As if that was more plau-
sible) The game then became about putting tiles in the right order to
satisfy the customers.

As I had learned from my previous prototypes, I wanted to first create
a game I could simulate quite well with paper prototyping before
committing any code. The grid structure at least partly allowed that.
After nailing down the first iteration of the rules, I went into Figma
to create the first playable prototype so I could show it to someone
else as soon as possible and get feedback on the very basic interac-
tions.

The rules were as follows:

1. You have a set number of room and bridge pieces you can place on
the board.

2. You will get a new batch of customers every turn, while the old
customers leave. You need to build a spaceship, that will cater
to their specific needs in a way that is not in conflict with the
requests of others.

First notes on transforming Concierge into a spaceport building game. The first idea was
to think of customers as items on a conveyor belt, you could design the route they take
and they properties they gain along the way.

Concidering whether interesting decisions came from a grid-like structure that would allow
all sorts of adjacency effects, or from irregular shapes, such as in Castles of Mad King
Ludwig, where the difficulty comes from having right types of spaces for the rooms available.

18 19

3. A spaceship design is valid when each of the customers can reach
their bedroom from the lobby tile, which is in the center.

4. Each tile costs money to use, and the farther out you build from
the center, the more expensive it becomes. This encourages, to
build compact, multi-purpose stations.

5. You would get points based on how well you were able to accom-
plish each customer’s requests while at the same time minimising
the amount of tiles the customer had to traverse in order to get
from the lobby to their bedroom.

6. The requests could be something like: “I want my bedroom to be
next to the spa”; or “I don’t want the restaurant to be next to
the docking stations.”

While these constraints evoked interesting gameplay, the process of
designing a new spaceship became quite stale after only a few tries,
because there was usually only one optimum place where to put the tile
and it was easy to spot. I added some additional requests that were
more like bonuses that needn’t be completed and that you could over-
look if you were low on cash. This seemed good at least on paper, but
once again, the number of variables was becoming too high to handle
with a paper prototype. In hindsight, I probably just wanted to get
to prgramming instead of trying to figure out how I could continue
this development on paper without any code. Looking back, I could have
utilised a simple Python script that would produce a deck of tiles
that had all the various properties for me. Then it would be only a
little manual work to get each hand into the paper prototype.

Playtesting the game in Figma. On the left there are the requests of four different
patrons or customers, and the graphs are two players’ attempts at fulfilling each
request. Both succeeded.

Me trying to graph out the gameplay loops and possible choices along the way. This was
later in the development, where I had a bit more refined idea on how the rooms would
exist as a deck of cards in the player’s hand.

20 21

behaviour in Unity extremely easy, by just loading or offloading
scripts onto game objects. So I needed to transform into that style
of working in order to guarantee the scalability of the project in the
future. I was in the middle of this refactoring when I totally lost
fate in the whole endeavour. So I went back to the drawing board.

TECH DEMO

For the tech demo, I first wanted to build the very basic interactions
to see if only moving tiles around and rotating them would be fun.
Also, as I’m sort of a beginner when it comes to programming, I wanted
to push myself and went in to develop robust code where there was a
separation of the visuals, the controllers and the data.

The problem with this is that while it is a standard way of producing
code in C#, the work model doesn’t really extend to Unity, where there
are game objects and an editor. Also, because I’m quite a novice when
it comes to this stuff, I would easily get lost in my own code, and
it would take a while every time to know what was my next course of
action.

This led to quite a bit of refactoring, where I wanted to convert from
one type of code structure to another. Eventually, I read about code
being split into smaller single-purpose classes, which makes changing

Ideating gameplay content. Here it became clear that to create all the combinations of
these elements would be impossible without some form of computation. In hindsight I
could have used some form of hybrid prototyping as with later prototypes, adding very
little programming where it was needed. (See Moving Manor)

Screenshots from the working demo. The demo itself worked like a dream, once I got it to
work. I could take tiles from the right side of the screen, rotate them and place them
into either empty squares, or on top of other tiles, swapping their places. Each tile
was able to read what tile was next to them and whether there was access between the two
via connected doors.

22 23

game that would teach about utilising complex interactions to the
player’s favour with all the propagating effects that were now techni-
cally possible.

The first proper idea was to copy a bit of what Galaxy Trucker does:
Build spaceships to facilitate a courier service of various items

ALTERNATIVE PLAY

Once I had finished and refactored the space saloon code multiple times
I felt I was sort of trapped. I had a working technical system for
moving and attaching tiles on a grid, and on a technical level, it
worked quite well. I just didn’t have a game. I felt like the proto-
types I had worked on in Figma weren’t as exciting as they were at
first. All-in-all it felt like the whole idea didn’t make any sense,
not from a thematic point of view nor from an interesting gameplay
point of view.

I didn’t want to let go of the code I had worked so hard to build, so
I decided to stick with it a bit and try to find a game that would fit
that constraint.

The first iterations of these explorations were naturally trying to
twist the spaceship idea into different forms. First I scrapped the
whole idea of caring and being empathetic to your customers. It didn’t
have anything to do with this game, and I felt it was a bit too much
of a challenge for me. Instead, if framed correctly, I could have a

Here I started to analyse how I would have to restructure the code to make it more
modular if and when changes in the game design happen. In the lower right corner, I’ve
listed some attributes, each of which would be its own class that could be loaded onto
an object depending on the current game state.

Here I tried to write out my thoughts on what I wanted the game to be about, what it was now, and how I
could bridge the gap. This technique has proven useful here but also in any other problem-solving context.
When I have to spell out my thoughts, logical errors will reveal themselves when analysing the text. I
try to keep no filters and instead write stream-of-consciousness writing. Important for me is to just keep
moving lest I get stuck on some technicality in the text itself. After this exercise, I will highlight any
interesting bits, and carry them over to a separate similar session or on post-its.

24 25

that require specific conditions eg. space for big items, or special
containers for others. This wasn’t too far from the original Space
Saloon concept but the main focus this time would be on the balance
between survivability and making a profit with the operation. Who cared
if the cargo was emotionally scarred for life after the transport?

4.2 REFLECTIONS
Looking back at Space Saloon, I feel like there is a game there, but
only if all theme is stripped away. I remember struggling to try to
justify all the different mechanics and their existence in the game
world. This wouldn’t be such an issue I think with games that have
more traditionally game-like themes, such as dungeon crawling with
monsters and wizards, but in the context of the hospitality industry,
there is a certain expectation of things functioning somewhat like
in the real world. Even though this too can be dressed in a fantasy
setting, I felt like with every decision I made regarding the game-
play, I had to make up some new ridiculous explanation of why things
work this way in this world. For example, the fact that you can get
new pieces of spaceships you can use in your hotel construction was
justified by setting the Space Saloon into an asteroid belt, where
brave adventurers would accidentally run into asteroids, destroying
their vehicles, and those parts would then float to the Space Saloon
for later use. Again, there was too much resistance.

But also in general the way customers in the player’s saloon were
graded was sort of ridiculous. I would really have to forget how the
real world worked, in order to accept this is how any system worked.
Who expects hotels to reconfigure to match your needs? But despite all
of these issues, I just wanted to push forward. A big reason for this,
I think, was that I was frustrated with the process and wanted to
just commit to something. This led me to waste a lot of time trying to
build the Space Saloon system in code. It also locked several consecu-
tive iterations and prototypes into trying to utilise this code.

I had somehow fooled myself into thinking that the game cannot be
prototyped in paper prototype format. But as I’ve learned by now, this
is an immediate red flag and premature coding should be avoided like
the plague. At least in my case.

In terms of the technical demo, the blunders I made in coding are part
of the cycle of trying to learn software development, I guess. What
could have been beneficial was to ask a real developer beforehand these
sorts of fundamental questions. The problem with that is that the
questions cannot be asked before there have been problems arising from
mistakes. I couldn’t have known to ask that question before I realised
the structure of the code will block any future progress. In other
words, more experience is needed.

Here I tried to formalise my thoughts on the stream-of-consciousness writing exercise
into rules and game elements. Yet I still couldn’t figure out any specific mechanics that
would induce the wanted gameplay.

26 27

In the last iteration, I think things sort of unravelled. I was trying
to push for an idea when in reality I should have just let the game
project rest for a while. Looking back it felt forced, similar to
Concierge. Even though I could see the spaceship and cargo hauling
game being played in my mind’s eye, I couldn’t figure out the founda-
tional truths about the game everything else would be built on. It’s
almost like trying to describe a dream.

I’ve found later that when approaching a game idea from a very logical
and linear point of view, trying to describe the game in its narrowest
manifestation, things should still make sense for the game to be built
on solid ground. If the game requires a ton of content and rules to
even approach the idea I had, the probability of it working is close
to zero. With the starship idea, I think this was the case. I couldn’t
describe what the core components were or what the narrowest possible
experience would be like or whether it would be fun.

28 29

5 HEGEMONY
Hegemony is a single-player mobile game experience based on a voting
board game I developed for my graduate thesis project. It was an
attempt at a palette cleanser and a complete change in direction from
the earlier game concepts.

5.1 DESIGN PROCESS
I came back to the games I had developed in my graduate thesis project
basically just to get inspired. While they were similarly painful in
their design process, they were now more or less finished and play-
able games. I wondered if I could transform one of them into a single-
player experience. This led to Hegemony, a game where you rule over a
nation, making decisions while keeping your constituents happy, and
resources in balance.

This wasn’t necessarily a serious attempt at making a long-term game
project, but rather looking at an existing design, and spending a
little bit of time in other phases of game development. Often the
most laborious part of any design project is the beginning. As all my
attempts thus far had been stopped short, I wanted to taste the rela-
tive ease at which decisions can be made in the later stages and in
other design tasks such as UI.

So I designed a few screens for the imaginary mobile game, as well as
some transition animations.

5.2 REFLECTIONS
I guess it was good I did this project because it gave my brain a
chance to rest a bit and experience a fuller picture of game devel-
opment. Often times the brain ties itself into knots over time if
no progress is made. It can create pockets of self-doubt and shake
self-confidence. This bit of foolishness gave me chance to enjoy
whole-heartedly something I know relatively well. I guess this also
gave me time to process all that had been going on with earlier proto-
types and mentally let go of some ideas that were nagging and look at
the whole endeavour from a fresh, more objective perspective.

Some of the screens developed for Hegemony. I first created a basic UX flow and then
started to refine them, of course working through the general look of the game.

30 31

6 MOVING MANOR
Moving Manor is a rogue-lite deckbuilding puzzler, where the player
controls an adventurer who is trying to find their way out of the
moving maze-like corridors of an archmage’s floating abode hidden
within the Astral Sea. The player progresses through the game by
successfully navigating their way through rooms filled with monsters
and treasure by utilising a deck of cards through which they can
manipulate the very environment around them. Various denizens of the
majestic halls, mostly former adventurers, who have now given up
hopes of escaping, are willing to improve your chances of escaping by
upgrading your cards in exchange for treasure.

6.1 DESIGN PROCESS
Looking back at my notes, I had been scribbling little doodles of a
dungeon crawler gameplay many times in the corners of my notes, but
I had always pushed that away. Once I actually gave it a chance and
thought about what kind of gameplay would be possible, I immediately
started getting excited. It was a clear sign of something clicking in
place, something that had not happened to this extent earlier during
this project.

PUZZLE GAME

My initial reaction was to start with as small as possible. I was
constantly trying to design in such directions where I didn’t have to
involve programming. I wanted something a little janky, reminicient of
old RPGs where movement is turn-based, giving me as the designer more
control.

The first idea came literally from mashing the two previous concepts
together: dungeon crawling on a grid, where tiles can be moved and
rotated. The first iteration reminded me actually quite a bit of The
Moving Labyrinth. The goal of the player is to go through a squence of
rooms, all the while avoiding monsters and collecting loot by rotating
a single tile per turn or tile of movement. Each turn the enemies
would also try to reach you and kill you. The design process was very
controlled and grew from this small seedling.

The game initially took the form of a puzzle game. I would build these
rooms with a solving strategy in mind. But after only a few games
playing it, it turned out there isn’t too many possiblities on a 4x4
grid. So grid size got increased.

Notes I had scribbled in-between other prototype notes. There was clearly something that
inspired me in this concept, because I kept getting back to it repeatedly.

32 33

While the game was fun and dead simple, it was still missing the stra-
tegic depth I was hoping for, some element that would increase the
depth of the game while keeping it technically still very elegant. So
very quickly I decided to add deck building into the game.

6.2 DECK-BUILDER
This is where I first noticed markings of something I could commit to.
I had already had a blast with playing the game, but adding a deck-
building aspect to the game made it sort of organic, and something I
as a designer could uncover, instead of me trying to shoehorn things
in.

Here are the current rules for the game:

GOAL

• Player must successfully navigate through the various ever-
changing floors and find the final exit out of the mage’s castle.

ROUNDS AND TURNS

• Each floor consists of procedurally placed tiles of varying type
on a 7 by 7 grid.

• The floor has successfully been completed when the player enters
the exit stairs tile. On their way to the exit, player may
attempt to collect treasure placed on the floor while avoiding
enemies by playing cards from their hand.

One of the first puzzles for Moving Manor. While this more puzzler version of the game
required meticulous placement of the tiles on my part, I would have liked to create an
algorithm that would place the tiles for me, following particular distribution rules,
thus increasing the potential of the game to new heights. As it turned out, the puzzle-
ness wasn’t what I wanted, so I pivoted to a rogue-lite deckbuilder quite quickly.

First rule set I used to playtest the idea on a bunch of people. It laid the foundation
for the rest of the game. This game already felt fun, and easy to grasp even for novice
players, which was a good sign.

34

Initial notes on the first versions of the game. As always, I was struggling to answer
the key questions about the game I was making: Do I have cards in this game? How
powerful they are? Are there Action Points you need to expend in order to use the cards?
How many cards do you have in hand? Thankfully I was able to answer these questions with
a simple playtesting session, as the game was so easy to set up and test on paper.

Attempt to formalise some of the more numbers-heavy elements of the game.

• The game is played in turns. Each turn as the player has taken
their turn, the enemies and other objects in the floor take their
turn.

1. The player has the opportunity to play cards from their
hand or spend Action Points (AP) to draw cards, this can
be skipped.

2. The player moves.

3. Enemies attack if possible.

4. Enemies move.

5. REPEAT from 1.

• Both the player and the enemies will see the entire map and each
opponent unless stated otherwise.

• The game will end if the player runs out of health points (HP) or
if they have no viable path to the exit. (compare to a stalemate
in chess) This can also happen if the player accidentally traps
themselves inside the maze by moving the tiles in such a way as
to block their access to the exit tile.

The first iterations of the
game were actually done on
paper this time. I felt like I
was on a slippery slope if I
involved computers at all in
the beginning phases, as in
the earlier prototypes it had
led to me quickly going into
Unity to prototype, which had
turned out to be wasted time.

36

The Manor would consist of Biomes players would come across. Each biome would have
slightly different types of layouts and monsters waiting for them. As opposed to
previous game prototypes, here coming up with new content or rules was effortless. They
seemed to always fit the theme.

I would host playtesting sessions straight in Figma, because it fitted perfectly the
requirements I had for the gameplay, grabbing a certain portion of the map and rotating
or moving it. It was actually easier in Figma than in paper prototype form, because
physical things tended to fly around once the map was touched. In Figma, I could also
track the stats of each player and monitor their card decks.

Ideating card effects by revealing all possible combinations.

After realising I had an actual potential long-term game project in my hands, I quickly
built a project management setup into Notion, where I tracked all my experiments, ideas,
and other tasks.

39

I used Iterary to manage player decks. It allowed me to create decks of cards from a
CSV file and allows basic functionality such as drawing and shuffling cards. This was a
perfect compromise for my use case, as both making the cards by hand and programming a
full-fledged system to handle it seemed cumbersome. While using it is quite heavy, it
allowed me to validate a few key questions about the game, namely if the cards scaled
correctly in power and if the starting decks were balanced.

I built a system of setting up random floors by scripting a small Python script that
created matrices in wanted dimensions and with wanted distributions of numbers. These
numbers would correspond to particular types of tiles. I would build the floor by hand
based on these matrices. This enabled me to test varying levels of probabilities for
each tile type, and how that would affect the gameplay. For example, more open floors
enabled ranged enemies to be more dominant.

For this game, I also scripted this CSV processor that enabled me to get subsets of my
data for an external tool called Iterary I used for managing card decks easily.

40 41

Currently, the floors are a bit bigger than in the beginning. I will probably also test 8x8
just because it’s the chess standard size and every time I’ve increased the size of the
map, there have been positive developments in terms of gameplay depth. But there’s probably
a limit.

6.3 REFLECTIONS
I feel like by consciously thinking about the constraints in the beginning
stages of this iteration I managed to avoid the common pitfalls I had fallen
into earlier. I managed to stay away from Unity long enough to have a valid
game concept that had been proven fun on paper. I managed to create a concept
that was symbolic and simple enough that I could code it. I also managed to
create it based on the earlier coded demo, which I hopefully get to use in some
capacity once I get into coding this iteration. I managed to create a system
that evokes complexity from the interactions of the components. And most of all
I really have a feeling there is a potentially successful game in there.

Here is an example of some of the cards in the Wizard’s deck. The game will have
multiple classes, each with its own playstyle. With the combination of tiles and floors,
it’s easy to come up with different ways of traversing the floors without them being too
foreign in terms of expected code. Things are symbolic enough that each card will only
turn on or off some particular script on game objects, but simultaneously I think I’ve
found a sweet spot where the symbolic nature of the game still allows for the player to
experience a genuine thrill of running around in a mad mages manor, barely surviving.

42 43

7 MOVING MANOR – NEXT
STEPS
As of writing this report, I have not begun programming the game.
However, I still try to avoid fully committing to writing any produc-
tion code and instead try to validate aspects of the game by using
the same hybrid approach I demonstrated earlier. I will write modules
that will allow me to prove that a design decision is valid, without
putting in too much effort.

I will also need to create a sort of decision-making procedure for
calling when will I fully commit to making the game a reality.

Ideating some of the aspects needed in code for the game to exist.

44 45

Writing a stream-of-consciousness problem-solving document becomes
almost like a dialogue between multiple minds. After this exercise,
interesting bits can be highlighted and carried over to a separate
similar session or on post-its. Otherwise, there is a risk of just
creating concepts where nothing gets validated.

For me at least, it’s also important that making decisions feels
effortless. Or at least once a decision has been made, it can be
tested and its validity confirmed. This gives a sign that there is
progress happening with the game, instead of gears grinding to a
halt. If the decision-making is thorny and always painful, whether it
relates to matching the theme to the mechanics or just coming up with
relevant game mechanics that would fit the bill, that can be a sign
that the game idea needs a fundamental shift in its core logic. Some-
thing isn’t aligned at the most basic level, so it affects everything
else. A separate issue relating to decision-making is that sometimes
the decisions themselves are not even relevant for validating the game
further. Brain gets stuck in a concept design loop, instead of trying
to analyse what can make the game better now. Here spelling out things
also works. What am I deciding on and why is it important? How will
making the decision help me finish this game?

Another point about the feeling of game design is to listen to one’s
own ambitions as well instead of only prescribing some set idea of
what the game should be about. Making games is a long endeavour, and
the process should ideally be enjoyable. If the game concept manages
to encapsulate perfectly some ideal game experience, but there is
no excitement, should that game exist? In the end, game development
requires constantly also playing that game daily for possibly years.
On the other hand, if there are viscerally positive reactions to game
ideas or design choices, in my opinion, they should be followed up on.

If there is a feeling of being tied to a knot, it’s good to look for a
fresh perspective by just taking a break and regaining self-confidence.
While taking breaks from projects is not something I’ve seen adver-
tised a lot anywhere, I think it gives a fresh set of eyes and a more
objective lens to look through.

Finally a bit about the coding trap, that is an ever-present threat for
me at least. If I feel like there is no other way than to jump into
code, I need to evaluate my own wants and needs at this point in time.
Do I just want to develop code? Or is the task actually such, that code
needs to be developed? And if so, is the mechanic so important it cannot
be changed so it can be represented analogically? It could only be
represented in this analogue way for only a few iterations, while still
keeping in the back of mind that the actual mechanic would be different
computationally. And finally, if actual code needs to be developed in
order for you to progress, can it be scrappy and fast code? Could only
a simple module aid the paper prototyping process further rather than
turning the entire project into a digital production?

8 LEARNINGS
Early validation is needed in order to use the limited time one has
most effectively. Seeing as game development is very time-consuming,
the further in the design process of any one particular prototype you
go before making the decision of whether or not to continue, the more
you have wasted your time. And also it is important to mention that
the further you go in a game development project, the more time it
takes to make any one iteration that is significantly different from
the previous one in order to test. So early validation rigorously is
key.

For me, this usually means validating game concepts before any major
production code has been written. As a solo dev with only beginner /
intermediate knowledge and experience in software development, it’s
easy to find oneself working on tangents in code that may or may not
have anything to do with the actual issue or the final game, just
because it’s a new and interesting way to solve a problem. Optimising
one’s time so that good quality production code is written simultane-
ously as one is learning is a good way to prune the long time periods
it takes to learn to code and to develop a game.

Here I outline some of the tools that helped me with early validation.
The first is to take the game concept or idea and strip it down to its
most basic and simple form. If the game concept still holds and is fun
to play with, it may be then easier to get into developing rules and
game logic that are based on simple principles, helping the designer
to understand why certain things in the game exist.

Another good way of doing this is to set an artificial constraint of
imagining making a board game instead of a video game. This way there
is no chance but to ideate ways to prototype on paper. Later proce-
durality and computation can be added in to enhance the experience.
But I still think this is the best way to ensure that as a solo dev
the size and complexity of the game project stay reasonable.

Speaking of constraints, having them as opposed to not is better.
Spelling out what can and cannot be accomplished gets rid of the mind-
sets that may lead to aiming for something outside the realm of possi-
bility. Also, setting constraints for design makes it easier to eval-
uate whether to continue on something, rather than finding out later
that something cannot be completed due to inexperience or lack of
manpower.

Spelling out thoughts is a powerful way of working through an idea.
Logical errors that couldn’t be seen earlier reveal themselves.

46 47

9 RESOURCES AND LINKS

FIGMA BOARD LINKS

• Hegemony Interactive Prototype

• Moving Manor Figma playtest file

GITHUB REPOS

• Space Saloon repository

• Concierge repository

COLAB

• Moving Manor Cards CSV processor

• Moving Manor Map Layout Matrix Generator

ITERARY LINK

• Moving Manor Player Deck Tool

https://www.figma.com/proto/sHDqCGiruvIxXMfFd2pfQL/Hegemony-UI-prototype?page-id=0%3A1&node-id=177%3A30665&viewport=425%2C593%2C0.05&scaling=scale-down&starting-point-node-id=177%3A30639
https://www.figma.com/file/iP9sROfJmBof5mKTdK5b74/Moving-Manor-Playable-prototype-0.1.0?node-id=0%3A1&t=NYudm3sTmWEc1jC7-1
https://github.com/eetuleppala/SpaceSaloon
https://github.com/eetuleppala/concierge
https://colab.research.google.com/drive/1oynkOO7uojxNvaAdxwXHyHb4D98aI_o9?usp=sharing
https://colab.research.google.com/drive/1tBMN5ZPJ37e3MxgIphy_j7QjXGx75rq6?usp=sharing
https://www.iterary.com/#!game/zaqs2bhrnckOsPqsYJfN8HogC3FeU8zuNHeQtkkte4fQQiJYtxt7H7XIJ2FVEsnRCRqsM5f1IgYCZT2OiEBfveTDSPlcaRInrFweCWSBf95s5QhlmIm6CaxULJHqOFDni8XTalh5Et38hQNtVNCkRUPrUnlTVjHMZcjBcpHgQF2SOMU1ZIEjuXBhWvfatyWU1MHjSWSajs4Fo9SRoHQlCYFDvUX3H4lHmpIrBfPpHBuqqU1lTpRtXofOkIwJiyEtBc43hgsw9cXQSJ4iN2cbohYZHvmtY6tMxi8H9nTgRcZ6Uw9UB7uRzCQ9f1ziRgsP6CLEC72u5BFVWc88so4i7UOtlRsracmLuJqHLiYYI3QIRBF7UxmUMMfvh3VUOckVSj7C9aI7NSY7U84UgkHRETmKfBNI4wu9zS2tzIrlsmghEZtYrfVoH9sYLC1UNou2CPtOBfPLUxDtx9SXbh1kUeBtlwHlYuKMU3cN3IbDHk9tbpUDNHQgSyvt8yUy2S6ZujDhkkhX5Up6SweTkbiKun7iVTQxURvFpph9c8DhVeSXLfJFzOu68CNatQLuRphvmIn1Cr2TWtXmf3MFjxIaWcecyJhDecqhlkhpaF4bFwHQTemCD3InnIvaHvF3viyvf8uMlFeYhrEtBtgqsOLhgKfmOiMDCgQTET9VhMwuePfgpSq4TykC5xCKkfyYh3lu19slqfy8UJBtEacbTVohafPirLcvxCB5TNDh6vsY2SkCxaU6BuDvil8HVDfrSrjTlxTjZSqNurLFMT57SpigRsxDINTbLCYwt9luqQsZvuJCgEheWs8wTRjFOguBah2NSeZhOwt8bCaLFMVFk8S54InOtrYtMPF3XS2yhk3TNH4tJQsanik4tVczNc5H25T1RU3OI8S2xsqOuxHwyCV9SogHOVuoUYghzu1quDlheeh8vFgzImbTQgUnzTzYhXguN4fgTjrUyOClcrwC2qt7ZczMf2KF45UWfobsgUXNH7mhQJs4ecxrtbbI7ah3t7oHK5ToQTZec7BcNvCV6iWWIpaFKeF6kHgnf5QtVmHO1tZZhx6skvFRZtEwUnUwEUxkhPzubBtR5ULYH6zCPDCzvcyZULOcRVfVRCK5Tk1tyi13TKWfQEtlQh8cb7IbmUnbib4c1Ys5PUJcXvsplh59h9JC9zUWqIlRSQVSoBHBpfxLS7t6zS3BTqU8QC35fQzS4bSL2cRcE4cvmTR3s7EH7qUX6cgESLnUahYrFrT9Bh8YU2qUazSx3U2CmOfMJT8nUes58SRpsegIlNSyvfJlIQVtqzskESv2IXiqU6gspXhn6FmQHqbIPWuD8u1yib1S9bU4pfVBS7pu9T4UklfzSqQuJpc1xUaQSgrFEBCD3cBteqs8ycBvS2tqUvNunyt5lS6QuMtpqh7OF3tvOC9TMt4WtjkTJjhvhXbhKyF8UNYt5DFjJFL3c86fPkUEVHVlSMJF21cQbh1bI5yT6VTllHYycbQHaaHa7SPPH3EfxOckuw2C19S4xUPbFOvImDU38C6XF8NtwKHppIZaT9Qh2qCPKsp8COZSk9TW5FLyS1Dsa2hYyuDc87sPQi3ujgh61F7WtpMCkKFrfKhbVCrfBZUB5COof4QsYaCPuzPF4XSK3T2MfelhqVCeoSw4co5tyPsemT8eSVntwuOpF4YcMzfmQTKKsz4sblcqktoTkZIEluKgSQEh4VHKzCLXHlNt9oirKC4jUzNtxpclxHb1tJDF8jUklUKbI4OTxlFoOuXpI8F2WtLeuyQc1Bi6jCqvfv6c3Qtb9slet9Zu3fDJT3Yc4aH4muJLTyfWjse1SnfYLI6rs14sWrUZmT9DIg9u48I37t8qH9EH1yC2buBetXQSgoF9YCz5HnLSETjBFPbUoBFRLSzQHrhWHVPtXlcE7f2VFxVIzcV1f6Ph1RtbH6bSPoS6rTk8FJJIoSkYHnLcogfvxSzcBOcE7sEwH8bf4oTLyHKQHK9InMUmQuv1UB1UOgFRVCkDSLgTq5TlHY5unyFzvUKa

	1 Introduction
	1.1 Project Constraints
	1.2 Game Prototypes

	2 Concierge
	2.1 Design Process
	2.2 Reflections

	3 Concierge Cards
	3.1 Design Process
	3.2 Reflections

	4 Space Saloon
	4.1 Design Process
	Initial design
	Tech demo
	Alternative play

	4.2 Reflections

	5 Hegemony
	5.1 Design Process
	5.2 Reflections

	6 Moving Manor
	6.1 Design Process
	Puzzle game

	6.2 Deck-builder
	6.3 Reflections

	7 Moving Manor – Next Steps
	8 Learnings
	9 Resources and Links

